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We present a method for calculating, by computer simulation, the direct correlation function ¢(1,2) for a
molecular liquid in the form of a spherical harmonic expansion. This allows us to test, at the most fundamental
level, predictions of the structure of molecular liquids using density functional and integral equation ap-
proaches. As an example, we test some simple Ansatze for ¢(1,2) for prolate hard ellipsoids of revolution.

PACS number(s): 61.20.Ja, 61.20.Gy, 61.25.Em

Structure in atomic and molecular fluids is described by
the pair distribution function g(ry,r,,0;,0,)=g(1,2),
where r,r, are the center of mass coordinates of particles 1
and 2, and 0, ,0, are unit vectors defining the orientations
(we focus throughout on the case of axially symmetric mol-
ecules having a center of inversion). For some purposes the
corresponding correlation function A(1,2)=g(1,2)—1 is
more convenient than g(1,2) and this is naturally expanded
in a complete set of angular functions which depend on the
separation r=|r;,| where rj;=r;—r, [1-5]. There are two
common choices, one based on a laboratory frame of refer-
ence, giving expansion coefficients A”"!(r), and one using a
frame based on the intermolecular vector r;,, giving coeffi-
cients A,,,,(7):

h(1,2)=2, k™ (r)®"" (i ,b,,T)
mnl

=4ng Ry(DYT@)Y™ (B) . (D)

Here the ®™"(ii, 0, ,T) are rotational invariants (as defined
in Ref. [6]) and the Y7(1;) are spherical harmonics; F is the
unit vector in the direction of r;,. For the chosen molecular
symmetry, m,n,l are all even and there is m«>n symmetry.
The h,,,, coefficients are termed the “x transforms” of the
h™"!; both sets arise naturally in theoretical predictions of the
structure of molecular liquids [6—8]. They are easily calcu-
lated in computer simulations [9,10] and some of them may
be determined experimentally.

The direct correlation function ¢(1,2) is traditionally de-
fined through the Ornstein-Zernike equation [2]

h(1,2)=c(1,2)+£ fdr3dﬁ3h(1,3)c(3,2), ®)

where p is the number density. (We restrict ourselves
throughout to the isotropic, homogeneous fluid phase.)
c(1,2) is intrinsically a shorter-ranged function than
h(1,2), acting as a kernel in the above relation. Although
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experiments and simulations do not provide a direct route to
this function, it is of equal importance to 4£(1,2) in the sta-
tistical mechanics of liquids, and there has been a dramatic
growth in interest in ¢(1,2) in recent years. This is because
of the rapid development of density functional theories of
fluids [11,12]: ¢(1,2) is simply related to the excess free
energy F°* of the fluid by functional differentiation with re-
spect to the local density p(1)=p(r;,0;):

c(1,2)= 8*(—F*/kpT)/ 8p(1) p(2), ©))

where kg is Boltzmann’s constant and T the temperature.
This expression leads to a variety of theories of both homo-
geneous and inhomogeneous fluids, mostly based on as-
sumptions regarding c(1,2) in the system of interest, or in
some reference system used as the basis of a perturbation
treatment. Onsager’s theory [13] of the isotropic-nematic
phase transition in liquid crystals, for instance, is a density
functional theory in all but name. Also, it is possible to ex-
press the condition of mechanical stability of the isotropic
phase relative to the nematic liquid crystal in terms of ex-
pansion coefficients of c(1,2) [14,15]; this gives an approxi-
mate estimate of the location of the thermodynamic phase
transition between the two phases.

Density functional theories supplement the traditional in-
tegral equation approaches (hypernetted chain, Percus-
Yevick, and developments thereof). Tests of these theories
are generally performed by comparing predicted A(1,2)
functions with the results of computer simulations [10]; only
in isolated cases, and only for atomic liquids to date, have
comparisons been made between theory and simulation re-
sults for ¢(1,2). Our understanding of atomic liquid structure
has been greatly advanced by the success of these ap-
proaches for the hard-sphere reference fluid, and by our pos-
session of a quite accurate analytical form for the hard-
sphere direct correlation function cyg(r/0, ) over the full
range of packing fractions # in which the fluid is stable (o is
the hard-sphere diameter and %= mpo>/6) [2]. Theories of
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structure in molecular fluids frequently make an Ansatz re-
lating ¢(1,2) to this hard-sphere form (see later).

All of the above observations provide strong motivation
to determine the direct correlation function from simulation
results for molecular liquids, and compare directly with theo-
retical predictions. In this paper we present such a compari-
son for fluids composed of hard ellipsoids of revolution, the
simplest generalization of hard spheres, but the techniques
apply equally well to other molecules having the same sym-
metry, and are easily generalized.

Blum [3-5] (see also [1]) has expressed the Ornstein-
Zernike equation in the reciprocal-space (k-space) form

Pouny(K) = Epmny (k) +(—1)Xp ; Pomja(K)E ny(K)

or 4)
T\ (k)= Z, (k) +(—1)XpFE, (k) & (k),

i.e., formally a separate matrix equation for each x,k. In
practical applications, the (infinite) matrices .% and & are
truncated by 1mposmg an upper limit n,m<npy,. In
these equations, (k) is the x transform of (k).
This is in turn the Fourier-Bessel transform of %’(r)
F(k)y=4m[sdr r 2jo(kr) N (r) where jo(x)=sinx/x.

Finally, H !(r) is the so-called “hat” transform of J#'(r):.

FNry=F (r)—[Tds s~ H#'(s)P{(r/s) where Pi(x)
=x"1dP;/dx and P/(x) is the usual Legendre function. The
?X(k) matrix is similarly defined. These equations apply to
the particular molecular symmetry mentioned above; for full
details consult [1-8].

Direct inversion of simulation data in k£ space through Eq.
(4) is possible; for our purposes it is more convenient to
adopt a real-space version which relies on a Wiener-Hopf
factorization proposed by Baxter for the case of atomic fluids
[16], and now also part of the standard literature in the
theory of molecular fluids [1,17,18]. It is possible to write

A R
r&(r)=—@\(r)+2m(~1)%p f ds G(s)TN(s—r),
(5a)

r#(r)=—Cr)+2m(—1)Xp

R a
X fo ds(r—s)H#,(r—s)2,(s), (5b)

where a new matrix (,(r) has been introduced and
@ (r)=d&,/dr; @’ is the transpose of &, . Here FH\(r) is
the x transform of % !(r), and similarly for &, (). Tt is
assumed that a separation R exists such that @X(r) 0,
@,(r)=0, and & (r)=0 for r>R. We use Eq. (5b) to de-
termine (7)) and ©,(r) from the simulation data %#,(r)
through an iteration scheme loosely based on the approach of
Jolly et al. [19] and Dixon and Hutchinson [20] for the
atomic case. Full details will be given in a separate publica-
tion [21]. We find that convergence is easily achieved within
a few tens of iterations for n.,,=4,6,8; taking n.,, =8 is

easily sufficient (as it is when solving integral equations
[7,10]) to determine accurately the functions of most interest
here (with m,n=0,2,4).

Once the scheme has converged, Eq. (5a) is used to de-
termine % ,(r) directly by quadrature. At very small r this
procedure is inaccurate, because of the factor of r on the left;
there is a small difference between two large quantities on
the right. To avoid this, we differentiate both equations (5a)
and (5b) with respect to r, subtract, and allow r—0. Some
rearrangement and an integration by parts yields

A 2 R 5
£,(0) = £, (0)=2m(—1)Xp (Uﬂ dr r# (NG (r)

~@;(r)@;T(r)) —@;(0)@;‘;(0)} :
©)

This allows us to calculate Z, ,(0) accurately, and the lowest
few values of & x(7) are obtained by interpolation. Finally,
the desired functlons %, (r) are obtained from Z, ,(r) by in-
verting the hat transform

We have carried out this procedure for hard ellipsoids of
revolution at various elongations and densities; these results
will be presented in full elsewhere [21]. Here we report se-
lected results for ellipsoids of elongation e=a/b=3 where a
is the major and b the minor axis, at a density p equal to half
the close-packed density (packing fraction 7=0.37). We car-
ried out standard collision-by-collision molecular dynamics
for a system of N=512 molecules in truncated octahedral
periodic boundaries; the run length was approximately 107
collisions. Full details of the method are available elsewhere
[22]. The k,,,,(r) coefficients were calculated directly in the
simulations as averages over 20 000 equally spaced configu-
rations, and tabulated at intervals 6r=0.01b.

For illustration, we compare our results for ¢(1,2) with
some common Ansdtze used in theoretical predictions of
h(1,2). Perhaps the simplest is due to Parsons [23] and Lee
[24], and amounts to taking the low-density limiting form
c(1,2)—f(1,2), and inserting a density-dependent scaling
factor: cpasons(1,2) = @(77)f(1,2). The Mayer f function is

f(1,2)=—1 for r=0(1,2), f(1,2)=0 for r>0(1,2), where

o(1,2)=0o(uy,u,,r) is the closest approach distance for
given orientations of molecules and center-center vector. As
before, 7 is the packmg fraction, and the choice ¢(7%)
=(1—7/4)/(1— 5)* generates an accurate equation of state
in the case of hard spheres.

A second well-known Ansatz is due to Pynn [25] and
Wulf [26]: cpynn(1,2)=cus(r/0(1,2),7), where cyg is the
hard-sphere function evaluated at the same packing fraction
n as the molecular fluid, and o(1,2) is defined above. This
approach has recently been adapted by Marko [27]:
CMarko( 1,2) =[1+ aP5(l1; - 1p) Jens(/0(1,2), 7), where P,
is the second Legendre polynomial and a depends upon
elongation and packing fraction in a way determined by an
optimization procedure based on the Percus-Yevick integral
equation.

Finally, Baus et al. [28] propose a factorization:
CBaus( 1:2) = 8(ﬁ1 ’ﬁZ)C HS(r/O-O’ 77)a where 8(ﬁl ’ﬁZ) is a
function representing excluded volume effects, the effective
diameter o is chosen to make mog/6 equal to the ellipsoid
molecular volume, and once again 7 is the packing fraction
of the molecular fluid.
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FIG. 1. Selected direct correlation function components with mn = 000, 020, 040, 220, 221, 440, from simulation (thick solid line),
compared with theoretical Ansdtze due to Parsons [23] and Lee [24] (dots), Pynn [25] and Wulf [26] (dashed line), Marko [27] (thin solid

line), and Baus [28] (dash-dot line).

In calculating the « parameter, Marko [27] used a simple,
analytical, approximation to ¢(1,2) defined by the Gaussian
overlap prescription of Berne and Pechukas [29]; the prefac-
tor £ of the Baus theory [28] is also most easily expressed
within this approximation. For consistency and simplicity,
we make this approximation in all the theories with which
we compare our results here, although it should be borne in
mind that small but systematic improvements will result
from using the exact ellipsoid contact separation o(1,2), cor-
responding to the simulation (see below).

Figure 1 shows comparisons between simulation and
theory for a selection of c,,,,(r) coefficients. Separations are
measured in units based on ellipsoid diameter, b= 1. We note
that all the functions are short-ranged, decaying very quickly
outside the overlap region »=3. The Parsons scaling of the
Mayer f(1,2) function is moderately successful in the partial
overlap region 1<r=3, giving the right qualitative shape
and approximate magnitude, but because f(1,2)= —1 inside
the core region r=<1 it fails dramatically here. The Pynn
approximation is also quite good, notably where m and/or n
is zero. Where both these indices are nonzero, notably for
those components that do not vanish as r—0, the Pynn ap-
proximation breaks down within the inner core where, as is
well known, it predicts an isotropic function in this limit.
Marko’s form constitutes an improvement over the basic
Pynn approximation in the core for m=n=2, where it yields
a reasonable r— 0 limit, but it does not improve higher-order
functions such as mnx=440. Also for this component the
deficiencies of the approximation for o(1,2) are apparent: a
weak cusp in the simulation results at =2 appears at larger
r in all of these theories, whereas the peak position is cor-
rectly given (e.g., for the Parsons theory, labeled “exact” in

the figure) if the exact 0/(1,2) is used. Finally, the factorized
form proposed by Baus et al. fares quite badly: only the
m=n components do not vanish, each curve has identical
shape, including a step discontinuity at the effective diameter
0y, and the function cannot reproduce the sign changes seen
for r=1 in some components.

In summary, the determination of the expansion coeffi-
cients of c(1,2) by simulation provides a different perspec-
tive on this function, which is at the heart of many theories
of liquid structure. In the partial overlap region, for the hard
ellipsoid example studied here, some of the simpler Ansatze
for ¢(1,2) are surprisingly successful at fitting low-order
spherical harmonic components, but require some systematic
improvement to match at higher order and shorter distance.
The replacement of the contact distance o(1,2) by the ap-
proximate Berne-Pechukas form, in theoretical treatments,
adversely affects some higher-order components. It is antici-
pated that further study of simulation-determined direct cor-
relation functions will help refine our understanding of mo-
lecular liquid structure. Especially promising is the possible
use of ¢(1,2) to calculate liquid crystal elastic constants [30].
A more extensive study of the hard ellipsoid, and related,
systems at various state points, comparisons with integral
equation theories, and analysis of the thermodynamic prop-
erties related to c¢(1,2), will be the subject of future papers
[21].
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